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Galvanomagnetic studies of degenerate p-type germanium are utilized to investigate the valence band 
structure at Fermi level penetrations up to 0.5 eV. Extensive resistivity and Hall measurements on a series 
of gallium-doped samples yield, for impurity concentrations >5X1019 cm-3, apparent free-hole concentra­
tions significantly in excess of the gallium concentrations as determined directly using several independent 
techniques. The experimentally observed disparity between the electrical and direct determinations of the 
gallium content can be accounted for by a detailed consideration of the valence band structure of germanium. 
Lax and Mavroides' treatment of the conductivity and Hall effect for parabolic, warped energy surfaces 
has been extended to include nonparabolic surfaces with variable warping. Application of this extended 
treatment to Kane's model of the multiple valence band structure of germanium satisfactorily predicts the 
observed departure of the Hall coefficient factor from unity over the impurity concentration range studied. 
The scattering relaxation time r is deduced from a comparison of the measured and calculated values of 
the conductivity. An analysis of r on the basis of screened impurity scattering in the Born approximation 
yields the observed energy dependence for E<0.29 eV. For E>0.29 eV a marked decrease in r occurs, which 
is attributed to interband impurity scattering involving the split-off band. It is suggested that a pronounced 
temperature dependence observed in the resistivity for r > 8 0 ° K arises from a corresponding temperature 
dependence of the electronic screening radius. 

I. INTRODUCTION 

T N recent years the energy band structures of various 
-*• semiconducting materials have been studied exten­
sively using galvanomagnetic effects, optical effects, and 
cyclotron resonance. As the experiments became more 
sophisticated it was found necessary in many cases to 
devise correspondingly more complex band structure 
models. Thus, for example, the multiple-ellipsoid con­
duction band and the warped two-valence band models 
of silicon and germanium were developed.1,2 However, 
because the materials studied were relatively pure, the 
implications of the experimental results were limited 
primarily to the immediate vicinity of the band edges, 
where quadratic approximations to the energy spectra 
in k space are normally found to be adequate. In the 
meantime, considerable theoretical attention has been 
focused on the problem of extending the energy band 
description of semiconductors throughout larger regions 
of k space.3 With the exception of optical studies,4 how­
ever, which have yielded important information, pre­
dominantly at various symmetry points, little conclu­
sive experimental evidence is available to test these 
theoretical extensions of the band theory. 

Degenerate semiconductors furnish an ideal means 
for a more detailed, systematic investigation of the 
band structure at energies appreciably removed from 

1 C. Herring, Bell System Tech. J. 34, 237 (1955). 
2 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 

(1955). 
3 See, for example, F. Herman, Rev. Mod. Phys. 30, 102 (1958); 

also, J. Callaway, Solid State Phys. 7, 99 (1958). ^ 
4 For tabulations of some of the principal optical results, see 

J. C. Phillips, D. Brust, and F. Bassani, in Proceedings of the 
International Conference on the Physics of Semiconductors, Exeter 
(The Institute of Physics and the Physical Society, London, 
1962), p. 564; and W. Paul and D. M. Warschauer, in Solids Under 
Pressure (McGraw-Hill Book Company, Inc., New York, 1963), 
Chap 8. 

the band edges. That the addition of degenerate con­
centrations of impurity atoms does not appear to intro­
duce serious modifications in the shape of the energy 
surfaces is suggested by the theoretical treatments of 
Parmenter5 and others,6,7 according to which the princi­
pal effect is simply a uniform rigid energy displacement 
of the intrinsic band structure arising from the screened 
impurity ion potentials. A similar energy shift, arising 
from electron exchange, has recently been discussed by 
Wolff.8 In addition, the random spatial distribution of 
impurities gives rise to tailing of the energy spectrum 
near the band edges. However, a relatively small frac­
tion of the free carriers is contained in the band "tails" 
because of the low density-of-states in this region of the 
spectrum. The available experimental information with 
respect to degenerate semiconductors tends to support 
the above picture of the band structure. The optical 
work of Pankove9 and of Fowler et at.10 on bulk material 
indicates a slight shrinkage in the band gap, which 
may be attributed to band tailing. Recent infrared 
reflectivity studies11'12 suggest that the effective masses 
are not appreciably modified in degenerate material. 
Extensive studies on tunnel diodes indicate that such 
diverse electrical properties as direct band-to-band 

5 R. H. Parmenter, Phys. Rev. 104, 22 (1956). 
6 M. Lax and J. C. Phillips, Phys. Rev. 110, 41 (1958). 
7 E. M. Conwell and D. W. Levinger, in Proceedings of the Inter­

national Conference on the Physics of Semiconductors, Exeter (The 
Institute of Physics and the Physical Society, London, 1962), 
p. 227. 

8 P. A. Wolff, Phys. Rev. 126, 405 (1962). 
9 J. I. Pankove and P. Aigrain, Phys. Rev. 126, 956 (1962). 
10 A. B. Fowler, W. E. Howard, and C. E. Brock, Phys. Rev. 

128, 1664 (1962). 
11 W. G. Spitzer, F. A. Trumbore, and R. A. Logan, J. Appl. 

Phys. 32, 1822 (1962). 
12E. P. Rashevskaya and V. I. FistuP, Fiz. Tverd. Tela 4, 2601 

(1962) [translation: Soviet Phys.—Solid State 4, 1907 (1963)]. 

33 



34 B E R N A R D , R O T H , A N D S T R A U B 

k (in) x!(X7(crrf!) k (IQQ) xl0~7(crrf') 

2.0 1.5 1.0 0.5 0 0.5 1.0 1.5 2,0 

FIG. 1. E versus k curves based on Kane's three-valence band 
model of germanium, with L~-~30.7h2/2mo, M=—5.Sh2/2mo, 
N=-33M2/2mQ, and A = 0.29 eV. The heavy-hole band is 
parabolic and warped with respect to the [100] and [111] direc­
tions, while the light-hole band is nonparabolic with energy-
dependent warping. The third band is that split off by the spin-
orbit interaction A. 

tunneling,13,14 phonon-assisted tunneling,15,16 pressure17 

and magnetic field18 dependence of the tunneling cur­
rent, and "excess current"19"21 can be adequately ac­
counted for on the basis of the intrinsic band structure. 

While the experimental work performed to date on 
both bulk degenerate material and degenerate p-n junc­
tions substantiates the close correspondence between 
the band structures of degenerate and intrinsic material, 
the results have not been sufficiently revealing to yield 
detailed information regarding the nature of the band 
structure away from the band edges. Cyclotron reso­
nance, which has been of immense value in the clarifica­
tion of intrinsic band properties, presents formidable 
problems in degenerate semiconductors arising from the 
extremely short relaxation times encountered. On the 
other hand, de Haas-Van Alphen effects, so useful in 
the study of metals, are not readily observable in most 
degenerate semiconductors. I t would seem, therefore, 
that at present the most promising approach to the 
further study of the band structure of semiconductors 
at points appreciably removed from the band edges 

13 L. Esaki, Phys. Rev. 109, 603 (1959). 
14 E. O. Kane, J. Appl. Phys. 32, 83 (1961). 
15 L. V. Keldysh, Zh. Eksperim. i Teor. Fiz. 34, 962 (1958) 

[translation: Soviet Phys.—JETP 7, 665 (1958)]. 
16 N. Holanyak, I. A. Lesk, R. N. Hall, J. J. Tiemann, and 

H. Ehrenreich, Phys. Rev. Letters 3, 167 (1959). 
17 S. L. Miller, M. I. Nathan, and A. C. Smith, Phys. Rev. 

Letters 4, 60 (1960). 
18 A. R. Calawa, R. H. Rediker, B. Lax, and A. L. McWhorter, 

Phys. Rev. Letters 5, 55 (1960). 
19 C. T. Sah, Phys. Rev. 123, 1594 (1961). 
20 A. G. Chynoweth, W. L. Feldman, and R. A. Logan, Phys. 

Rev. 121, 684 (1961). 
21 R. S. Claassen, J. Appl. Phys. 32, 2372 (1961). 

involves galvanomagnetic investigations of degenerate 
materials. 

I t is the purpose of the present paper to utilize 
galvanomagnetic studies of degenerate gallium-doped 
germanium to investigate the valence band structure 
at Fermi energy penetrations up to 0.5 eV, correspond­
ing to impurity concentrations up to 5X1020 cm"3. The 
basis for carrying out these studies is the existence of a 
striking experimental disparity between the electrical 
and direct determinations of the impurity content of 
the samples in the degenerate range.22 Trumbore and 
Tartaglia23 first pointed out that at the higher doping 
levels, Hall concentrations, assuming the degenerate 
formula p= 1 /Re, appeared to be larger than the corre­
sponding chemical concentrations, but doubted that the 
effect was real, owing to large experimental errors. 
Similar observations and conclusions were noted by 
McCaldin and Wittry.24 In order to examine this ques­
tion more carefully we have performed extensive resis­
tivity and Hall measurements on a series of degenerate 
^>-type germanium samples and have found that, for 
impurity concentrations >5X10 1 9 cm -3 , the apparent 
free-hole concentrations are significantly in excess of the 
gallium concentrations as determined directly using 
several independent techniques.25 That is, the Hall co­
efficient factor r—NaRe is substantially less than unity, 
where Na is the true impurity concentration. 

I t is well known that in nondegenerate material devia­
tions of the Hall coefficient factor from unity can be 
related to the detailed form of the energy surfaces, as 
well as to the scattering mechanism. In particular, de­
partures from spherical energy surfaces tend to decrease 
r, as in the case of the many-valley ellipsoid model of 
the germanium conduction band.1 Similarly, Lax and 
Mavroides26 have examined the parabolic, warped two-
valence band model of Dresselhaus, Kip, and Kittel27 

and have shown that the effect of warping of the energy 
surfaces is a reduction in the Hall coefficient factor for 
Boltzmann statistics. In germanium, for example, ignor­
ing the scattering contribution, the Hall coefficient 
factor of the heavy-hole band alone is predicted to be 
0.77. On the other hand, the effect of combining the 
two warped bands is to yield a net r substantially > 1 , 
a result which has been observed experimentally by 
Morin28 and studied extensively by Beer and Willard-
son29 in nondegenerate material. Since experimentally 

22 H. Roth, W. D. Straub, and R. Tramposch, Bull. Am. Phys. 
Soc. 7, 174 (1962). 

23 F. A. Trumbore and A. A. Tartaglia, J. Appl. Phys. 29, 1511 
(1958). 

24 J. O. McCaldin and D. B. Wittry, J. Appl. Phys. 32, 65 (1961). 
25 W. Bernard, H. Roth, and W. D. Straub, Bull. Am. Phys. 

Soc. 8, 224 (1963). 
26 B. Lax and J. G. Mavroides, Phys. Rev. 100, 1650 (1955), 

henceforth referred to as LM. 
27 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 

(1955); henceforth referred to as DKK, 
28 F. J. Morin, Phys. Rev. 93, 62 (1954). 
29 A. C. Beer and R. K. Willardson, Phys. Rev. 110, 1286 

(1958). 
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we observe a substantial decrease in r as the Fermi level 
penetrates the valence band, the energy surfaces must 
exhibit a more complex form away from the band edges. 
We assume, of course, that the LM results are valid in 
the case of degenerate statistics, and that the effect can 
be accounted for on the basis of band structure con­
siderations alone. 

The calculation of Kane30 for the valence band struc­
ture of germanium is of particular interest in that 
portion of k space with which we are concerned. In 
Fig. 1 we have used the results of Kane's calculation to 
plot E versus k curves for the germanium valence bands. 
We note that as the bands are penetrated, the light hole 
band becomes nonparabolic and its warping energy 
dependent. In order to incorporate a complex band 
structure of this type in the analysis of our experimental 
results, it is necessary to extend the LM treatment of 
galvanomagnetic effects in warped, parabolic energy 
bands to the case of nonparabolic bands with variable 
warping. That the Hall coefficient anomaly can be 
satisfactorily accounted for in this way is strong con­
firmation of the validity of the Kane model. This result, 
in turn, enables us to examine in some detail various 
aspects of the scattering processes in degenerate ^-type 
germanium. 

We first present in Sec. I I a comprehensive discussion 
of our experimental results. Section I I I is devoted to the 
extension of the LM calculation of galvanomagnetic 
effects to include nonparabolic bands with variable 
warping. In Sec. IV we incorporate Kane's valence band 
model into the formalism, and a theoretical prediction 
of the Hall coefficient factor as a function of impurity 
concentration is obtained. Finally, in Sec. V, the con­
centration and temperature dependence of the relaxa­
tion time is examined, and the relevant scattering 
mechanisms are discussed. 

II. EXPERIMENTAL 

A series of gallium-doped germanium single crystals 
was grown in our laboratory with concentrations ranging 
up to the solid solubility limit31 of approximately 
5X1020 cm - 3 . Although the crystals were grown by both 
the horizontal zone and Czochralski techniques from 
seeds oriented in the [111], [HO], and [100] crystallo-
graphic directions^ no correlation between these param­
eters and the experimental results was observed. 

Each sample was cut ultrasonically into a standard 
six-arm bridge configuration with approximate dimen­
sions 10 mmX2 mm X I mm, sandblasted, and subse­
quently etched in CP-4. Five electrical contacts were 
attached to each sample by bonding 3-mil gallium 
(1%) gold wires, providing current, resistivity, and 
Hall probes. 

Hall effect and resistivity measurements were carried 
out in a stainless steel liquid helium research Dewar 

«> E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956). 
31 F. A. Trumbore, Bell System Tech. J. 39, 205 (1960). 
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FIG. 2. Resistivity versus I/Re for degenerate gallium-doped 

germanium samples studied. Results are shown for the two tem­
peratures 4.2 and 295°K. 

suspended in a 12-in. electromagnet having tapered pole 
pieces with a 1.4-in. air gap. A careful magnetic field 
calibration was made from 100 G to 20 kG with a 
Rawson-Lush rotating coil gaussmeter, type 820, ac­
curate to 0 .1%. Current through the sample was 
supplied by a Princeton Applied Research Model 
TC-602R constant-voltage source modified to provide 
an adjustable current stable to one part in 105. Potential 
measurements were made with a Type 150R Keithley 
voltmeter and monitored with a Leeds and Northrup 
continuous single point recorder. A multiple potential 
divider permitted the ultimate calibration of the re­
corder-voltmeter system on all ranges to better than 
± 0 . 2 % of full scale. Measurements of temperature de­
pendence were performed in a Dewar of large thermal 
mass, which incorporated means for sensitive tempera­
ture control. The temperature was monitored with a 
calibrated32 platinum resistance thermometer. 

During the course of the measurements, we observed 
the standard precautions associated with galvanomag­
netic studies such as magnetic field and current reversal, 
sample orientation with respect to magnetic field, and 
current-voltage linearity. These precautions eliminate 
all extraneous thermogalvanomagnetic effects with the 
exception of the Ettingshausen effect. However, calcula­
tions based on standard formulas for metals,33 suitably 
corrected for the modification of the Wiedemann-Franz 
ratio in degenerate semiconductors,34 indicate that the 
Ettingshausen contribution to the Hall signal should be 
completely negligible at helium temperature and < 1% 
at room temperature, except possibly for the lowest 
impurity concentrations considered. 

A summary of all resistivity and Hall investigations 
performed at 295 and 4.2°K is presented in Fig. 2. The 

32 M. G. Holland, L. G. Rubin and J. Welts, Temperature—Its 
Measurement and Control in Science and Industry (Reinhold 
Publishing Corporation, New York, 1962), Vol. 3, Part 2, p. 795, 

33 A. H. Wilson, Theory of Metals (Cambridge University Press, 
Cambridge, England, 1954), 2nd ed., Chap. 8. 

34 E. H. Putley, Proc. Phys. Soc. (London) B65, 991 (1952). 
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FIG. 3. Temperature dependence of the resistivity for several 
representative samples of gallium-doped germanium. 

experimental scatter is of the order of ± 3 % , which is 
that expected from the total estimated possible errors 
arising from both instrumentation and measurements 
of sample dimensions. The possibility that sample in-
homogeneities contribute significant errors to these 
measurements is thus essentially eliminated by the lack 
of excessive experimental scatter. The fact that the 
samples were prepared from numerous crystals grown in 
different orientations and by two different techniques is 
further evidence in support of this conclusion. The 
possibility that the presence of dislocations affects the 
electrical transport properties was also investigated. 
Hall and resistivity measurements performed prior and 
subsequent to the addition of dislocations by bending a 
sample near its melting point resulted in no observable 
change. 

The temperature dependence of the resistivity for 
several representative samples is shown in Fig. 3. The 
experimental results presented in Figs. 2 and 3 will form 
the basis for an analysis of the scattering processes 
appropriate to these materials, and will be discussed in 
detail in Sec. V. 

I t is clear that an essential element in the present 
study is the accurate determination of the Hall coeffi­
cient. Consequently, both magnetic field and tempera­
ture dependences were carefully investigated to ensure 
that each sample could be characterized by a unique 
Hall coefficient. Typical results of the magnetic field 
dependence of the reciprocal Hall coefficient are ex­
hibited in Fig. 4. With the possible exception of the low-
field values, where the signals in the most highly doped 
samples are fractions of microvolts, the experimental 
scatter is of the order of ± 0 . 5 % . We note that the 
measurements of all samples were performed in the low 

magnetic field limit f*H<Kl, and, hence, no variation 
with field is to be expected. 

Figure 5 shows the temperature dependence of the 
reciprocal Hall coefficient for typical samples in the 
range from liquid helium to room temperature. Except 
for the sample with the smallest concentration, which 
appears to exhibit an 8% rise at higher temperatures, 
the Hall concentration is temperature-independent to 
within ± 3 % . Because the Hall coefficient is largely 
insensitive to temperature, we shall use room-tempera­
ture values throughout the following discussion. 

In order to provide a direct determination of the Hall 
coefficient factor of our samples, it was necessary to 
obtain the actual gallium concentrations. Three inde­
pendent methods were utilized to achieve this objective, 
viz., spectrographic, neutron activation, and complexo-
metric titration analyses. These procedures are de­
scribed in brief below. 

Spectrographic analysis was carried out by the Jarrell 
Ash Company of Newton, Massachusetts. The pro­
cedure involved the dissolution of the sample and an 
equal weight of indium in nitric and hydrofluoric acids 
and the subsequent dilution with water. An emission 
spectrum was obtained with a plane grating spectro­
graph (3.4-m focal length) using the solution spark 
technique incorporating a rotating disk electrode. Sensi­
tive spectral lines of gallium and indium were selected 
for several concentration ranges and analyzed with the 
aid of a densitometer. The relative line intensities were 
compared to carefully prepared standards and each 
gallium concentration deduced from a set of three 
determinations. 
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FIG. 4. Magnetic field dependence of the Hall concentration 1/Re 
for representative samples of gallium-doped germanium. 
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Neutron activation analysis was performed by the 
General Atomic Division of General Dynamics Corpora­
tion. The analytical procedure involved irradiation of 
the sample and a gallium standard in a thermal neutron 
flux. After decay of short-lived interfering activities, the 
gamma-ray spectra of sample and standard were taken. 
The gallium concentration was determined by com­
paring the relative intensities of a suitably selected 
gamma ray. 

Complexometric determination of gallium in ger­
manium was carried out in our laboratory using EDTA 
titration. The samples were dissolved in aqua regia, the 
excess nitric acid destroyed with urea, and the gallium 
extracted with ether using standard procedures. Excess 
zinc-EDTA complex was added under controlled con­
ditions of pH. and temperature. Using Zincon as indi­
cator, the solution was titrated with EDTA to a sharp 
yellow end point and the gallium concentration thus 
obtained. All solutions were standardized against a 
primary gallium and a secondary zinc standard. 

The gallium concentration determinations Na pro­
vided by the various methods, in conjunction with the 
electrically determined Hall concentrations 1/Re, lead 
directly to the evaluation of the Hall coefficient factor 
r=NaRe as a function of doping level. The results in 
Fig. 6 display the relationship between the Hall coeffi­
cient factor and 1/Re. In comparison to the previously 
discussed case of the Hall concentrations, the experi­
mental uncertainties of the direct gallium determina­
tions are rather difficult to assess. Although individual 
internal consistencies are better than ± 5 % , it is seen 
that the absolute errors inherent in a given technique 
can be somewhat larger. Because the three independent 
methods yield results which are in substantial agree-
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FIG. 6. Hall coefficient factor of degenerate, gallium-doped ger­
manium as a function of Hall concentration 1/Re. The various 
techniques used for the direct determination of the gallium con­
centration are indicated. The theoretical prediction is the result 
of an analysis based on the actual valence band structure of ger­
manium taking into account nonparabolicity and energy-
dependent warping. 

ment, however, it is clear that we have obtained a 
reliable quantitative statement of the Hall coefficient 
anomaly. 

It is seen from Fig. 6 that, at low concentrations, the 
Hall coefficient factor r>l and is approaching its non-
degenerate value. As 1/Re increases, r monotonically 
decreases, becoming significantly <1 for l/Re>5X1019 

cm-3. These results form the basis for our investigation 
of the valence band structure of degenerate ^-type 
germanium. 

III. GALVANOMAGNETIC COEFFICIENTS IN 
NONPARABOLIC BANDS WITH 

VARIABLE WARPING 

In this section we derive general formulas from which 
the free carrier concentration p, the conductivity <r, and 
the Hall conductivity a(H) can be calculated for non-
parabolic energy bands with variable warping. In 
terms of these quantities, the Hall coefficient for a 
single band is 

R=-a(B)/a29 ( i ) 

and the Hall coefficient factor r, which expresses the 
ratio of the true concentration of free carriers to 1/Re is 

r=peR— —epa{H)/(72, 

In the case of a two-band model 

(2) 

f = -e(ph+pi)(ahW+aiW)/(ah+aiy. (3) 

Because the transport integrals appropriate to the bands 
considered here cannot be evaluated in closed form, we 
extend the series expansion technique developed for the 
case of parabolic bands with constant warping by LM.26 

The T—> 0 approximation, appropriate to degenerately 
doped semiconductors, will be adopted throughout. 
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We assume an energy spectrum for holes of the form 

JS(k)=G(tf»), (4) 

where G(K2) is a general monotonically increasing 
function of 

K*<=k*{l+b(E) 

XLl+c^kxV+ky^+kz"kx')/k^m}. (5) 

The nonparabolicity of the band is implicit in the func­
tional dependence of G on K2, while the functional 
dependence of b on E implies a variation of the warping 
with energy. For G{K2) -> AK2 and b-^±.B/A, Eqs. 
(4) and (5) reduce to the parabolic, warped valence 
bands of DKK.27 We will also make use of the LM 
approximation to K2, 

K2c^a{E)k2[\+y{E)q']J (6) 

in which only the first two terms of the expansion in 
powers of 

q—"g \KX Ry \Ky R>z \R>z &X )/R 

are retained. In Eq. (6) 

a(E) = tl+b(E)(l+lc2yt23, 
and 

b(E)c2 

7 ( £ ) = . 
2a(E){\+\c2yi2 

(7) 

(8) 

(9) 

We next consider the general expressions for the free 
hole concentration p, the conductivity a, and the Hall 
conductivity a(H) in crystals exhibiting cubic symmetry. 
With the assumption of degenerate statistics, these can 
be written in spherical coordinates as 

and 

1 /*2x /»T 

= / d<pl ddkzsmO, 
12TTZJ0 JO 

e2r r2* r % k\dE/dkx)
2 

_ / ^ / ddsmd 
4 T T 3 W O Jo k- ' 

eh2 r2r rv 

/ dip I i 
£7T3Wo Jo 

(10) 

•V*E(k) 

X 

dd sin0 

<o k-V*J5(k) 

r / dE\2 d2E dE 6E d2E 

\dkv/ dkx
2 dky dkx dkydkx 

(12) 

The angular integrations are to be performed over the 
Fermi surface as determined by Eqs. (4) and (5). Since 
we wish to focus our attention on the implications of 

band structure with respect to the galvanomagnetic 
effects, we have assumed the scattering relaxation time 
r to be a function of the energy alone. 

We recall the LM technique for evaluating the trans­
port integrals by considering the free hole concentration 
p, which is formally unaffected by either the lack of 
parabolicity or the energy dependence of the warping, 
since it is determined simply by the volume in k space 
enclosed by the Fermi surface. Substituting for kz from 
Eq. (6), Eq. (10) becomes 

J£l /.27T nit 

p = / d<p ddsmd(l+yq)-
127r*a*i*Jo Jo 

•3/2 

K* 

12Tda^2Jo 

/•27T /.T 

/ iv\ 
Jo Jo 

dd 

/ 3 15 35 \ 
.( 1 y ^ + _ _ 7 2 g 2 _ _ _ 7 3 g 3 + . . . \ ( 1 3 ) Xsin#( 1 yq-\ y2q2——yzqz-\-
V 2 8 16 

where we note that Kz is a constant over the Fermi 
surface. Expressing q, Eq. (7) ,in spherical coordinates 
and carrying out the indicated angular integrations, 
we obtain 

p=(K*/3v*a*i*) 
X ( 1 + 0 . 0 5 T + 0 . 0 1 6 3 5 7 2 + 0 . 0 0 0 9 0 8 7 3 + • • • ) . (14) 

In order to include the nonparabolicity and the energy 
dependence of the warping in a tractable way, we wish 
to separate these effects from that of the warping alone 
in the differential operations on E(k) appearing in 
Eqs. (11) and (12). Differentiation of Eqs. (4) and (5) 
with respect to kx yields 

dE 

dkx 

dG •D(K2) db dE 

d(K2)l Dkx dE dkx 

-A2 (15) 

where D/Dkx denotes an explicit partial derivative with 
(11) respect to kx, and 

A 2 ^ A 2 [ l + c 2 ( * , V + V * . 2 + * . 2 * » 2 ) / * 4 ] 1 / 2 . 

Solving for 6E/dkx, we obtain 

dE dG D(K2) if db dG 

dkx d(K2) Dkx I \ dE d(K2) 
- A 2 ] . 
) / 

(16) 

(17) 

By performing second differentiations of Eqs. (4) and 
(5) for E and invoking Eq. (17), it is possible to obtain 
analogous expressions for d2E/dkx

2 and d2E/dkxdky. I t 
is shown in Appendix A that this procedure leads for 
cubic symmetry to the relatively simple result 

/ dE\2 d2E dE dE d2E f dG 

\dkv/ dk»2 dkx dky dkxdky \d{K2) 

db dG \ 
1 A2 

dEd(K2) J 

X 
-D(K2)- 2D2(K2) D(K2)D(K2) D2(K2) 

Dky J Dkx
2 Dkx Dky DkxDky 

(18) 
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Substitution of Eqs. (17) and (18) into Eqs. (11) and (12) yields a and <r(£r) in the form 

e*r dG 

and 
4TT3^2 d(K2) 

«•(#)=. 

Jo Jo 
dOks sin(9 

rD(K2) 
9\ 
L Dkx 

D(K2) D(K2) D(K*) 
ky \~kL 

Dky Dkz JL dEd(K2) 

db dG 
1 A2 

dG i 2 r2T 

4Tr*h*Ld(K2). Jo Jo 
de~ 

rZ>(#2)-j2#2C£2) D(K2)D(K2) D2(K2)) 

]\ 
kz sinfl 

• D(i£2) # ( Z 2 ) D(K*Y 

Dky Dky 

db dG "I2 

1 A2 

(19) 

(20) 

Dku JL dEd(K2) J 

Noting, since K2 is explicitly a homogeneous second-order function of kx, kV} kZi that 

\=2K2
y 

- D(K2) D(K2) D(K2y 
kX Vky \~kZ 

L Dkx Dky DkZ J 

and substituting for kz from Eq. (6), Eqs. (19) and (20) become 

e2rK* dG r2T r / 1 fD(K2)^2 

and 
8 T T 3 W 2 d(K2) J o 

eh2K* r dG "I 

r t1 p 
d̂ > / ^ sinflf — -

Jo vi^2L 
#&* 

[ l + 7 « ] 8 / 2 
" db dG 
1 A2 

. dE d(K2) ])) (21) 

8TT% 
— / dip \ d6 
a^ldiK^J Jo Jo 

/ l trD(K*)-]2 D*(K2) D(K2)D(K*) P 2 (Z 2 )} 
Xsinfll — • l 

\Knl Dk„ J Dkv DkJ)kv\ 
[l+7<?]3 / 2 

' db dG 
1 A2 

. dE d(K2) J!) (22) 
*, -i D&s2 Dk: 

Using Eq. (6) for K2, the quantities (\/K2)[D(K2)/DkXJ and 

( 1 / Z 2 ) { [ Z > ( # 2 ) / ^ 

are found to be polynomials in 7, the coefficients of which are functions of the angular coordinates only. We 
point out that Eqs. (21) and (22) differ from the LM result in two important and straightforward respects. The 
effect of the nonparabolicity enters simply through the quantity dG/d(K2), which replaces A outside the integrals, 
while the energy dependence of the warping gives rise to the correction factors {1 — (db/dE)\_dG/d(K2)'\h?}~'1 in 
the integrands. 

The quantity A2 appearing in Eqs. (21) and (22), like K2 in Eq. (5), can be approximated by the first two terms 
of an expansion in powers of q: 

A 2 ~ a ^ 2 ( l ~ 7 ^ ) , (23) 
where 

a ' - a + i c 2 ) 1 ' 2 , Y W / 2 ( l + f c 2 ) . (24) 

Using Eq. (23), together with Eq. (6) for k2, we obtain 

r db dG 1 
1 A2 = 

L dEd(K2) J 
where 

and 

db dG 1 a"(l+Tq) 
1 A2 

dEd(K2) J (1+7?) 

db dG a' 
d — -K* 

7 

dE d(K2) a 

db dG a'y' 

a"L ' dE d{K2) ay' 

>' 1 
~K2 . 

J 

(25) 

(26) 

(27) 

For db/dE<0, which as will be seen in Sec. IV, is satisfied by Kane's valence band model of germanium, T is 
typically of the same order of magnitude as 7. In fact, as the warping becomes energy-independent, db/dE —» 0, 
a" —* 1, and r —> 7. We also note in this connection that the requirement dE/dk>0 in every direction in k space 
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is approximated by the condition G " > 0 . Substituting Eq. (25) into Eqs. (21) and (22), we have the results 

e2rKz dG r2ir 

and 

/»2TT f*ir 

/ dv 
Jo Jo 

ddsindl— • 
1 VD(K2)' 

eh2K* r dG 

8TWaV2a"2Ld(K*) 

8T*h2a*i*a" d(K2) J0 'Jo \K2L Dkx J 

1 trD(K*)-\*D*(K*) D(K*)D(K*) 'D*(K>) 

/ ( i+7?) 1 / 2( i+r?) (28) 

Xsinflf — 
\K*[L Dkv J Dkx 

We now obtain approximate evaluations of the trans­
port integrals in Eqs. (28) and (29) by expanding the 
quantities 

L(l+yq)-liKl+Tq)-1'] and [(l+7?)1/2(l + rg)-*], 

respectively, in powers of q and performing the indicated 
angular integrations. The resulting series for a and 
cr(jff) can be written in the form 

2e2rK* dG 

3w2h2a1'2a" d(K2) 
(l + #l+#2 + #3+#4+#5H ) (30) 

and 

ptfOr 
4e 3 r 2 iW 2 r dG -j2 

3 * r W 2 U(K2)J 

(31) X (l+yi+y2+yz+y*-\ ), 

where the detailed expressions for the indicated terms 
of the series are given below in Table I. It is seen that 
the terms have been grouped such that each ^th-order 
term is of the form 

n 

E VnmymTn~m. 

In the limit of constant warping T —> 7, and the series 
reduce to those obtained by LM. We have explicitly 

TABLE I. Series expansion terms for the quantities a and <r<H) 

Term 
in 

series Explicit evaluation in terms of y and r 

xi -0.016677-f0.03333r 
x2 0.037017

2-0.00437Tr+0.00873r2 

xs 0.0004407
3+0.00025972r-0.0002087r2+0.0004l5r3 

X* 0.00037374+0.0002947
3r+0.000i8572r2 

-0.0000677r3+0.000135r4 

xb 0.00000637
6-f0.00000537

4r+0.00000407
3r2 

4-0.00000217
2r3-0.00000347r4-f0.0000069r6 

yx -0.083337+0.06667r 
y2 -0.040787

2+0.032557r+0.02619r2 

^3 -0.0070907
3-0.0003087

2r-0.0012507r2 

-f-0.001662r3 

y* 0.00024807
4-f0.00123107

8r-0.0019627
2P 

+0.0010707r3+0.0006739r4 

DkX Dky DkJDky 
[(i+Y<z)-1/2(i+r?)2]). (29) 

) 

evaluated the series for each transport integral to the 
order indicated by LM. 

Before proceeding to apply the above results to the 
valence bands of germanium, it is of interest to comment 
briefly on their implications with respect to nonpara-
bolic, spherically symmetric bands. Suppose, for ex­
ample, we attempt to approximate the germanium 
valence bands by neglecting the warping, but allowing 
the bands to deviate from parabolicity as the energy 
penetration is increased. The results can be most directly 
obtained by considering Eqs. (14), (30), and (31). Since 
b=0, then a = a " = 1, 7= r = 0 , and all series expansions 
reduce to unity. Using Eq. (2) for the Hall coefficient 
factor r, it is apparent that for a single, nonparabolic 
band r = l , so that pz==l/Re.Z5 For a spherically sym­
metric two-band model, we find, using Eq. (3) for r, that 

{ph+Pi}\Pn\ 
r dGh n

2 r dGi n2 

J +Pi\ T ^ T I 
.d(K2). Ld(K2)J 

dGh dGi ]2 

ph +pi 
d(K2) d(K2) J 

(32) 

It can be seen that r> 1 for such a model by rewriting 
Eq. (32) in the form 

r^l+phpr 

r dGh dGi l 2 

Ld(K2) d{K2)\ 

ph-
dGh dGi I 2 

- > 1 . (33) 

Pv 
t rpi 

d(K2) d(K2)J 35 The result p=l/Re for a single, spherically symmetric, de­
generate band is also of interest in connection with the theory of 
metals. In a number of texts on the band structure and transport 
properties of solids, a commonly advanced simple explanation for 
the anomalous positive Hall effect exhibited by certain metals 
assumes a reversal of the Hall voltage at inflection points of the 
energy bands in k space. That is, it is assumed that when a (sphe­
rically symmetric) conduction band is filled with electrons beyond 
an inflection point, one is concerned with holes, and thus, the Hall 
effect becomes positive. It is evident from Eq. (31) that the Hall 
effect for a nonparabolic spherical band does not in fact change 
sign at an inflection point. The reader can quickly convince him­
self on this question by applying Eq. (12) to a simple energy band, 
for example, of the form E(k) —Ak2—Bk^, Thus, the above simple 
criterion cannot be applied to the choice between electronic and 
hole conduction, and the explanation for the anomalous Hall effect 
in metals must rest on more subtle band structure considerations. 
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IV. THE VALENCE BAND STRUCTURE OF GER­
MANIUM AND THE HALL COEFFICIENT 

FACTOR ANOMALY 

Having derived an approximate formalism for the 
calculation of p, a, and a{H) in nonparabolic energy 
bands with variable warping, we now consider explicitly 
the valence band structure of germanium. The most 
detailed calculation available over the region of k space 
with which we are concerned appears to be that due to 
Kane,30 who extended the parabolic, warped, two-band 
model of DKK2 7 by assuming that the energy measured 
from k~0 is not necessarily small compared to the 
spin-orbit splitting. 

Since the split-off band, as well as the familiar light-
and heavy-hole bands, is involved, Kane obtains a 
third-order secular equation for the energy. Although it 
is necessary to solve the secular equation numerically 
for an arbitrary direction in k space, it is possible to 
obtain explicit solutions for the three energy bands in 
the [100] and [111] directions. In the [100] direction 
the heavy-hole band has the form 

Eh^°^ = (A-B)k2
y (34) 

while the light-hole band Ei and the split-off band EA 
have the form 

El^
100] = H(2A+B)k2+A}^{Z(2A+B)k2+Aj 

-4A(A+B)k2-^(A+2B)(A-B)k^2. (35) 

The — and + signs correspond to the light-hole band 
and the split-off band, respectively. In the [111] 
direction we have 

£A[H1] = [ 4 - (£2+lC2)l/2]£2 (36) 
and 

^,A[1111 = i { [ 2 ^ + ( ^ 2 +iC 2 ) 1 / 2 > 2 +A} 

^H(L2A+(B*+ic*yi*2k2+A)2 

- 4 A [ ^ + ( £ 2 + i C 2 ) 1 / 2 ] & 2 

- 4 [ ^ + 2 ( J 5 2 + | C 2 ) 1 / 2 ] 
X D4 - (B*+JC2) w]*4} ̂ . (37) 

The E versus k curves obtained from Eqs. (34) through 
(37) have previously been introduced in Fig. 1. The 
value assumed for the spin-orbit splitting, as found by 
Kane to yield the best agreement with optical data, was 
A=0.29 eV. The values selected for the other valence 
band parameters were A = 13Ah2/2mo, B—8.3h2/2mo, 
and C— 12.Sh2/2mo, as obtained by Dexter, Zeiger, and 
Lax from cyclotron resonance experiments.36 According 
to Eqs. (34) and (36) the heavy-hole band is parabolic 
with constant warping in the [100] and [111] direc­
tions. On the other hand, it is seen from Eqs. (35) and 
(37) that the light-hole band exhibits a departure from 
parabolicity and a change in warping as the band is 
penetrated, such that at large energies it becomes 

36 R. N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev. 104, 637 
(1956). 

identical with the heavy-hole band except for a constant 
energy displacement. In the [110] direction, which is 
not shown in Fig. 1, the heavy-hole band, as well as 
the light-hole band, deviates from parabolicity. The 
E versus k curves for the two bands in the [110] 
direction lie between their respective E versus k curves 
in the [100] and [111] directions. 

We note that the Fermi surface intersects the split-off 
band, which is also shown in Fig. 1, for hole concentra­
tions >1.8X102 0 cm - 3 . Because this band contains 
< 1% of the total carriers for the highest impurity con­
centrations considered, however, it will not be explicitly 
included in our calculation of the galvanomagnetic 
effects. This approximation appears to be a valid one, 
since the experimental results can be satisfactorily 
accounted for using the two-band model. Although the 
direct contribution of the split-off band to the conduc­
tion processes may be neglected, it does appear to affect 
the transport properties of the other two bands through 
the relaxation time r. The role of the split-off band with 
respect to interband scattering will be discussed in the 
following section. 

The general form for a nonparabolic band with 
variable warping introduced in Sec. I l l contains two 
essential variables: The energy dependence of the warp­
ing through the parameter b(E) in Eq. (5) for K2, and 
the functional dependence of the energy on K2 in Eq. 
(4). Thus, it is possible to obtain an exact fit to Kane's 
model in two directions of k space, which we choose for 
simplicity to be the [100] and [111] directions. For 
low energies this procedure reproduces the warped, 
parabolic bands of DKK, while for higher energies it 
furnishes a reasonable approximation to Kane's model 
in the [110] direction. The energy dependences of b and 
of K2 for the light-hole band are derived from the follow­
ing considerations: Since K2 is constant over a surface 
of constant energy, we obtain from Eq. (4) the 
relations 

^[ioo]2[l+^] = ^ [ n i ] 2 [ l + K l + ^ 2 ) 1 / 2 ] = ^ 2 , (38) 

or, solving for b, 

(144c2)1/2£[m]2--£[ioo]2 

Equations (35) and (37) are solved for &[ioo]2 and &mu2 

as a function of £ , and the resulting expressions are 
substituted into Eq. (39) to obtain b(E). Having ob­
tained b as a function of E, we then substitute the 
appropriate relation of Eq. (38) for k2 in terms of K2 into 
either Eq. (35) or (37) to obtain E=G(K2). The result­
ing b versus E curve for Kane's light-hole band is shown 
in Fig. 7, and the G versus K2 curve is shown in Fig. 8. 
The energy dependences of the quantities db/dE and 
dG/d(K2), which are required for the calculation of a 
and <riH) in the light-hole band, are also presented in 
Figs. 7 and 8, respectively. 
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FIG. 7. Energy dependence of the warping parameter h(E) and 
its derivative dbi/dE for the germanium light-hole band. 

The free-hole concentrations pn and pi, the conduc­
tivities ah and <n, and the Hall conductivities ah

{H) and 
o-z(H) were calculated for Kane's heavy- and light-hole 
bands using Eqs. (14), (30), and (31). In the case of the 
heavy-hole band, G(K) = AK* in Eq. (4), b=-B/A 
= -0.634 in Eq. (5), a "= l , and T=y. c=C/B=1.5Q6 
in Eq. (5) for both bands. The Hall coefficient factor r 
was obtained by substituting the above results into 
Eq. (3). Since we are interested primarily in examining 
the consequences of band structure with respect to the 
various transport properties, the relaxation times have 
been assumed identical for the two bands, so that they 
cancel in Eq. (3). Since the Hall coefficient factor is 
quite sensitive to the relative magnitude of the r's, the 
approximate validity of this assumption can be deduced 
from the agreement with experiment. 

The resulting theoretical prediction of r as a function 
of 1/Re is shown by the solid curve of Fig. 6. For 
l/i?e<5Xl019 cm"3, r>\ and approaches the LM 
result for parabolic bands with constant warping. For 
l/J?e>5X1019 cm"3, r decreases monotonically, ap­
proaching its high-concentration value of 0.703 at 
l/jRe^3X1020 cm~3. The theoretical curve is seen to 
account in a quantitative way for the essential features 
of the experimental results.37 Because of the experi­
mental scatter, it is not possible to distinguish clearly 
any additional features which might arise from aniso­
tropic scattering processes, the influence of the split-off 
band, or inequality of the two relaxation times. How­
ever, it seems clear that such effects, if they exist, must 
be relatively minor. The agreement between theory and 
experiment indicated in Fig. 6 has two significant con­
sequences: First, it demonstrates that the Hall coeffi­
cient factor anomaly can be accounted for on the basis 
of appropriate band structure considerations alone. 

87 After the theoretical calculations were completed, the cyclo­
tron resonance valence band parameters quoted recently by 
J. J. Stickler, H. J. Zeiger, and G. S. Heller, Phys. Rev. 127, 1077 
(1962), came to our attention. A calculation in the high concen­
tration limit using their values yields r = 0.648, which is in slightly 
better agreement with the experimental results. 

Second, it lends strong support to the validity of Kane's 
model for the valence band structure of germanium. 

V. DISCUSSION OF SCATTERING PROCESSES 

We now turn to the question of the electronic scatter­
ing processes appropriate to degenerate p-type ger­
manium. We have already seen that the Hall coefficient 
factor anomaly can be satisfactorily accounted for by 
proper calculation of the galvanomagnetic coefficients 
for the germanium valence band structure. By com­
paring the conductivity calculated on this basis in terms 
of the scattering relaxation time r [see Eq. (30)] with 
the experimentally determined values presented in 
Fig. 2, we would expect to obtain a reliable characteriza­
tion of r as a function of energy. The resulting curves of 
r versus E at T=4.2°K and r -295°K are shown in 
Fig. 9 for the two-band model, assuming equality of the 
light- and heavy-band relaxation times. For E<0.29 eV, 
r exhibits an approximate E~0A dependence at both 
temperatures except for a slight fallofl of the 295°K 
curve at the lower energies. We will see that in the 
region of E<0.29 eV, r corresponds both in energy 
dependence and order of magnitude to screened im­
purity scattering for degenerate statistics. We note that, 
notwithstanding the temperature dependence, the re­
laxation times are far too small to be accounted for on 
the basis of lattice scattering. For E>0.29 eV, at which 
energy the Fermi surface first intersects the split-off 
band, the decrease in r becomes much more rapid. We 
attribute this deterioration of the relaxation time to 
interband scattering involving the split-off band. 

In order to obtain an estimate of the r arising from 
screened impurity scattering, we consider for simplicity 
a spherical band of effective mass m* in a medium of 
dielectric constant e. The total electronic scattering 
cross section for momentum transfer due to a screened 
impurity potential of the form V(r) = — (e2/er)e~r,x is, 

3.0 4.0 5.0 
Ex 10s (ergs) 

FIG. 8. Energy dependence of the quantities K*i and dGi/d(K2i), 
showing the nonparabolicity of the germanium light-hole band. 
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in the Born approximation,88 

27r0%*2r 
9(E)= ln(l+4\2&2)-

e2h*k4 L 

4\2£2 

1+4A2£2 ] • (40) 

where X is the electronic screening radius. This is pre­
cisely the Brooks-Herring result.39 Hence, the relaxation 
time due to a concentration N of impurity ions is 

< • ( £ ) = : 

in* 6%SkZ 

fikm 2Tre*rn*N 

X|ln(l+4X2^2)-
4X2&2 - r 1 

;J • (41) l+4\2&2. 

The quantity X2 is determined by the ratio of the diffu­
sion constant D to the mobility /* according to 

\*=(e/4ireN)(D/fx). (42) 

The mobility-diffusion ratio is, in turn, determined by 
the Einstein relation40 

p/eD=(l/N)(dN/dEr), (43) 

where here EF is the Fermi level referred to an arbitrary 
fixed zero of energy. By properly taking into account 
the energy displacement of both the Fermi level and the 
band edge as the semiconductor is doped to degeneracy,41 

it can be shown that42 

\2=eE/107re2N, (44) 

where E is the Fermi energy referred to the band edge. 
The relaxation time was calculated for the heavy-hole 

band from Eqs. (41) and (44), using the density-of-
states effective mass w* = 3.11X10~28 g obtained from 
Eq. (14) for the heavy-hole concentration. The magni­
tude of the resulting r was found to be too large by a 
factor ~ 3 . Although the criterion of validity for the 
Born approximation is not well satisfied over the range 
of impurity concentrations studied, since kX never 
becomes ^>1, the discrepancy between the observed 
and predicted magnitude of r seems too large to be 
adequately accounted for on this basis. We suggest, 
rather, that there must exist additional, related scatter­
ing processes which we have not considered. One such 
process may arise from the interaction between the 
conducting electrons and the localized electrons which 
screen the impurity potentials. A second process may 
involve, in the case of multiband degenerate semicon-

38 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., 1949), p. 168-169. 

39 H. Brooks, Phys. Rev. 83, 879 (1951). 
40 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). 
41 W. Bernard, H. Roth, A. P. Schmid, and P. Zeldes, Bull. Am. 

Phys. Soc. 7, 232 (1962); also Phys. Rev. 131, 627 (1963). 
42 The expression for X2 given by Eq. (44) can be shown to be 

valid for a system of parabolic bands having a common zero of 
energy. Furthermore, we note that for the conventional calculation 
of X2, in which the motion of the band edges is ignored, the factor 
i^ is replaced by J. 
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FIG. 9. Energy dependence of the average scattering relaxation 
time r for the light- and heavy-hole bands at T = 4.2°K and 
r = 295°K. The marked departure from the theoretical energy 
dependence for £>0.29 eV is attributed to interband scattering 
involving the split-off band. 

ductors, interband impurity scattering. This latter 
possibility has previously been suggested by Pankove 
and Aigrain9 in connection with their optical studies 
on degenerate material and also by Morgan.43 

The solid curve in Fig. 9 shows the theoretical pre­
diction of r versus E normalized to the experimental 
results at T=4.2°K to permit a comparison with the 
observed energy dependence. For E<0.29 eV the agree­
ment is found to be surprisingly good. However, for 
E>0.29eV the experimental points are seen to fall off far 
more rapidly than the predicted curve. The fact that the 
Fermi surface intersects the split-off band for E>0.29 eV 
suggests that the marked depression of r in the range of 
high impurity concentrations arises from the contribu­
tion of the split-off band to the scattering processes in the 
light- and heavy-hole bands. This conclusion is further 
supported by the apparent insensitivity of the Hall coef­
ficient factor, Fig. 6, to the presence of the split-off band, 
in spite of its extremely low effective mass. In Appendix 
B we consider some general consequences of interband 
scattering from the point of view of the Boltzmann 
equation and detailed balance. It is shown that the 
effect of interband scattering on the relaxation of carriers 
in a low-mass band is considerably more pronounced 
than that in a high-mass band. Since, according to the 
analysis of Fig. 9, the interband scattering between the 
split-off band and the two principal bands can be quite 
appreciable, we would expect r in the split-off band to 
be considerably smaller than that in the other two 
bands. This conclusion is supported by a detailed 
examination of Eqs. (B14) and (B15) in conjunction 
with results shown in Fig. 9. 

43 T. N. Morgan, BuU. Am. Phys. Soc. 8, 224 (1963). 
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The temperature dependence of the resistivity shown 
in Fig. 3, and the corresponding temperature depend­
ence of the scattering relaxation time indicated in Fig. 9, 
also raise fundamental questions with respect to the 
electronic screening of impurity ions in a degenerate 
semiconductor. In the range of degenerate statistics it 
seems reasonable to attribute the temperature depend­
ence of the relaxation time to that of the screening 
radius X [see Eq. (41)]. We have observed a similar 
temperature dependence of the screening radius in con­
nection with our junction potential studies in ger­
manium tunnel diodes.41 The junction capacitance 
built-in voltage, which contains a negative term <* X2, 
exhibits, as in the case of r, a saturation with tempera­
ture for r < 8 0 ° K and a mono tonic decrease with in­
creasing temperature for T>80°K. Furthermore, the 
relative magnitude of the observed changes with tem­
perature of the capacitance built-in voltage of the diodes 
and the relaxation time in the bulk material appears to 
be consistent with the assumption of a common tem­
perature-dependent X. However, the proposed tempera­
ture dependence of the electronic screening radius 
cannot be readily accounted for. Although, as the tem­
perature is increased, one would indeed expect the 
screening to become less effective due to enhanced 
thermal motion of the free carriers, no appreciable in­
crease in X should occur so long as kT remains small 
compared to the Fermi energy. 

In addition, the origin of the interband scattering by 
screened impurity potentials is not apparent on the 
basis of conventional scattering theory. The role of 
phonons with respect to momentum conservation in 
interband scattering has been extensively studied by 
Herring1 and others and is well understood. However, 
the mechanism by which crystal momentum can be 
conserved in interband scattering by screened impurity 
ions is by no means clear. This, as well as the question 
of the temperature dependence of the electronic screen­
ing radius, remains an interesting problem for future 
investigation. 
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APPENDIX A 

In this Appendix we derive the expression, Eq. (18), for the term in the integrand of Eq. (12) involving second 
derivatives of E with respect to k. 

Differentiation of Eq. (15) for dE/dkx with respect to kx yields 

d2E d2G rD(K2) db dE 

dkx
2 d(K2)2L Dkx dE dk 

: i 2 dG rD2(K2) db dEkMx
2 d2b/dE\2 db d2E n 

-A2 + + 2 - + — ) A 2 + A2 , (Al) 
, J d(K*)L Dk2 dE dkx A2 dE2\dkJ dE dkx

2 J 

where 
Mx

2=2k2+c2(ky
2+kz

2). 

Similarly, differentiation of Eq. (15) with respect to ky yields 

d2E d2G 

dkMv d(K2)2\ 

where 

•L(K2) db dE 

+ 1 
, Dkx dE dkx 

dG 

+ d{K2) 

•D(K2) db dE • 
1 ^ A 2 

L Dky dE dky . 

-D2(K2) 1 db / dE dE\ d2b dE dE db d2E " 
+ ( kXM2 +kyMy2 ) + A2 + A2 

.DkxDky A2 dE\ dky dkj dE2 dkx dky dE dkxdkv . 

My
2^2k2+c2(kz

2+kx
2). 

(A2) 

(A3) 

(A4) 

Substituting for dE/dkx and dE/dky from Eq. (17) and solving Eqs. (Al) and (A3) for d2E/dkx
2 and d2E/dkxdky 
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respectively, we obtain 

d2E ( 1 }i_q-_ D(K*)/Dk, 

dkx* [\-{db/dE)[dG/d(K*)~]h*\ \d(K*)^\-{db/dE)ldG/d{K*y\b?. 
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) 
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We now substitute Eqs. (A5) and (A6), together with Eq. (17) for dE/dkx and dE/dky, into the quantity 

(A6) 

'/dE\2 d2R dE dE d*E 

This procedure yields 

dE\2 d2E dE dE d2E / dE\2 d2E 
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all other terms canceling identically. However, since all other factors appearing in the integrand of Eq. (12) 
possess cubic symmetry, we are free to interchange x and y in any term in Eq. (A7). Therefore, the terms involving 
kxMx

2 and kyMy
2 cancel, and Eq. (A7) reduces to Eq. (18). 

APPENDIX B 

We consider here certain general features of interband 
scattering from the point of view of the Boltzmann 
equation and detailed balancing. In particular, we shall 
derive expressions for the scattering relaxation times 
TI and r2 appropriate to a system of two spherically 
symmetric bands in terms of the interband scattering 
cross sections. 

To first order in the electric field 8, and zero order in 
the magnetic field, the Boltzmann equation for band 1 
can be written in the form 

e(df0/dE)8'Yl 

= - A/(ki) fdW P(k! ,k i ' )+ / dW A/ (k / )P(k / ,k 1 ) 

~ A / ( k 1 ) / ' j k 2
/ P ( k 1 , k 2 0 

+ jdk2'Af(k2')P(k2',k1), (Bl) 

where Af(ki) is the displacement of the distribution 
function in the ^th band from its equilibrium value 
/o, P(k,-,ky) is the transition rate from k t to ky, and 
\i=(l/h)VkiE is the electron velocity in the state kz. 
Similarly, the Boltzmann equation for band 2 is 

e(dfo/dE)S-v2 

= - A/(k,) fdW P(k2,k2 ') + jdk2
f A/(k2 ')P(k2 ' ,k2) 

-Af(k2)jdWP(k2,ki) 

+jdk1'Af(kl')P(k1',k2). (B2) 

We assume that the scattering centers are spherically 
symmetric and that the electronic energy is conserved 
in the scattering process. Then the transition rate 
P(k*,k/) can be written in terms of the corresponding 

file:///dkyj
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differential cross section <Ja(dij>) according to 

P(k, ,k/) - (Nhvw/kflaniOirWi-E/), (B3) 
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the form 
A/(ki)==X<(E)cos0<, (B8) 

where 0» is the angle between € and k». In fact, sub-
where 6{j' denotes the angle between k*and k , , andN is ... ,. t ^ / B O V , ^ / T ) ,N , /T),_v . , , 
, . . . r f. • *. T£ • J J\L- stitution of Eq. (B8) into Eqs. (B6) and (B7) yields 

the concentration of scattering centers. If, in addition, ^ ^ 
we make the physically reasonable assumption that the 
interband and intraband scattering transition rates 
separately obey the detailed balance condition 

e— 
dE 

P(k i ! k/ ) = P ( k / , k i ) , 

then it follows from Eq. (B3) that 
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\T22 lT2 l / 27*21 

Substituting for P in terms of o-# from Eq. (B3), 
the Boltzmann Eqs. (Bl) and (B2) become 

a/o 
-8-Vi=— ^ i A / ( k 1 ) / , ^ 1

/ 

—=Nvi J dtt (l-cos0)cr«(0) 

vnifixv) 
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where 
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1 r 1 

lTij J 2Tij 
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(Bl l ) 
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+Nvt 
h* 
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e—£-v2=— Afo2A/(k2) / d£l2 022(622') 

dE 

We note that 11 /2^ | < | l / i r # | , and that for s-wave 
scattering 1 / 2 T ^ = 0 . 

Solving Eqs. (B9) and (BIO) for A/(k») = X{(E) cos0t-, 

WAfW)*n(0lv) (B6) w e o b t a i n 

A/(k») = -e(df0/dE)vi- 8>n, 
where 

1 1 i>y 1 

Ti = : • 

(B13) 

+M: > / <K22 ' A/(k2
/)o'22(6>220 

L- \Ta \Tij/ \Tjj iTji/ 2Tij %Tji-

(B14) 

-Nv2Af(k2) IdQi' 

By invoking the detailed balance condition of Eq. (B5), 
together with the definitions of Eq. (B12), we find 

0"2l(#21') 1 n V 1 
nTij Uj K% mTji 

for m~l, 2 , (B15) 

+Nvr— / dO/ A/(k/>1 2(02 1O, (B7) , . , . .. f , . „ f , . , , . 
^22 J which implies that the effect 01 interband scattering on 

the lifetime in a light hole band will be more pronounced 
where d£l denotes an elementary solid angle. By ex- than that on the lifetime in a heavy-hole band. A 
panding <r# in Legendre polynomials and invoking the quantitative estimate of the effect of interband scatter-
addition law for spherical harmonics, it is readily verified ing for any specific model can be obtained in principle 
that Eqs. (B6) and (B7) are satisfied by solutions of using Eqs. (B14) and (B15). 


